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Finite-size scaling in disordered systems
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The critical behavior of a quenched random hypercubic sample of linear sizeL is considered, within the
‘‘random-Tc’’ field-theoretical model, by using the renormalization group method. A finite-size scaling behav-
ior is established and analyzed near the upper critical dimensiond542e and some universal results are
obtained. The problem of self-averaging is clarified for different critical regimes.

DOI: 10.1103/PhysRevE.65.026129 PACS number~s!: 75.10.Nr, 05.70.Fh, 64.60.Ak, 75.40.Mg
e
e
he
lin
lts

te
om

l-
s

a
tic
lf-
a
ive
s
lt
rg

n

n
th

th
m
a

rr

the

he
te a
re is
he

ds
nt
os-
the
y is

lly
re
e
e-
he

ost
of

for
s is
the
ons
-

at-
p
ure

the

the

ated

our

an
t

sic
I. INTRODUCTION

The description of effects of disorder on the critical b
havior of finite-size systems has attracted a lot of inter
@1–8#. Up to now, discussions have taken place on whet
the introduced disorder influences the finite-size sca
~FSS! results @3,8#, compared to the standard FSS resu
known for pure systems@9–11#. A formulation of general
FSS concepts for the case of disorder is strongly complica
due to the additional averaging over the different rand
samples. For a random sample with volumeLd, whereL is a
linear dimension, any observable propertyX, singular in the
thermodynamic limit, has different values for different rea
izations of the randomness and can be considered as a
chastic variable with meanX̄ and variance (DX)2

ªX2

2X̄2, where the overline indicates an average over all re
izations of the randomness. Here, an important theore
problem of interest is related with the property of se
averaging~SA! @12#. If the system does not exhibit SA
measurement performed on a single sample does not g
meaningful result and must be repeated on many sample
numerical study of such a system also will be quite difficu
This point has been studied recently by means of FSS a
ments@1,4#, renormalization group~RG! analysis@2,5# and
Monte Carlo simulations@4,6#. The quantity under inspectio
is the relative varianceRX(L)ª(DX)2/X̄2. A system is said
to exhibit ‘‘strong SA’’ if RX(L);L2d asL→`. This is the
case if the system is away from criticality, i.e., ifL@j.

At criticality, i.e., whenL!j, the situation depends o
whether the randomness is irrelevant or relevant. In
former case the relative varianceRX(L);Lapure/npure, where
apure and npure are the specific heat and correlation leng
exponents respectively, for the corresponding ‘‘pure’’ syste
Since their ratio is small and nonpositive, this leads to ‘‘we
SA’’ @2#.

In the latter case, when randomness is relevant, the co
lation length exponent of the random systemn random.2/d
@2#, and the system exhibits ‘‘no SA,’’ asRX(L) does not
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vanish and is a fixed nonzero universal quantity even in
thermodynamic limit.

The lack of SA in disordered systems implies that t
standard FSS breaks down. Thus, one needs to formula
FSS theory suitable for the case under consideration. The
an ongoing activity in this field but an understanding of t
problems at a deeper level is still desirable@1,3,8#.

The successful application of the field-theoretical metho
@13,14# for the analytic calculations of the size-depende
universal scaling functions for pure systems makes the p
sible extension of these methods very appealing also in
case of disordered systems. The appropriate field theor
the N-componentc4 theory with a ‘‘random-Tc’’ term @15–
21#. The analytic difficulties raised by the disorder usua
are avoided with the replica trick by solving an effective pu
problem @17#. However, the perturbative structure of th
theory is still much more complicated than for the corr
sponding pure system, raising additional difficulties in t
applicability of the ideas proposed in@13,14#. Some of them
are of rather hard computational nature.

Between the generic models for magnetism, the m
popular and relatively well-studied model by means
Monte Carlo simulations is the Ising model~i.e., N51! due
to the fact that in three dimensions this is the model
which, in accordance with the Harris criterion, randomnes
relevant. But its RG analysis is complicated as a result of
well-known accidental degeneracy in the recursion relati
that needs higher order ine and so the use of the loop ex
pansion to second order~see, e.g.,@15,18–20#!. This leads to
the apparent computational difficulties in the finite-size tre
ment of the system. Thee calculations based on the loo
expansion to second order are not done even for the p
finite-size systems. In this situation, more attractive for
finite-size RG study are the disorderedXY (N52) and
Heisenberg (N53) cases, as these are simpler and have
same qualitative features as governed ind542e dimensions
by a random fixed point.

Other problems have a more basic nature and are rel
with the breaking of the replica symmetry~see@22#!. Since
its deeper understanding is still lacking, they are beyond
interest in the present study.

In this paper we analyze the finite-size properties of
N-component (N.1) model of a randomly diluted magne
with hypercubic geometry of linear sizeL. Exact calculations

s,
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are performed in the mean-field regimed.4, and up to the
first order ine near the upper critical dimensiondc54. Al-
though in this case, the problem of usefulness of the co
sponding series expansions away from the dimensiond54
2e arises and is questionable~see @23# and references
therein!, we shall show that many generic FSS properties
the model can be established and we hope this would h
implications for more realistic cases.

The paper is organized as follow. In Secs. II and III w
define the model and the effective Hamiltonian. In Sec.
we perform the analysis in the zero-mode approximation
Secs. V and VI we give the expressions for the shift of
critical temperature and the renormalized coupling consta
in first order ine. Section VII deals with the verification o
the FSS, and the analysis of the problem of SA is given
Sec. VIII. Finally in Sec. IX we present our main concl
sions.

II. MODEL

We consider the ‘‘random-Tc’’ Ginzburg-Landau-Wilson
model of disordered ferromagnets~see, e.g.,@15–20#!,

Hr52
1

2 ELd
ddxF tuc~x!u21w~x!uc~x!u21cu“c~x!u2

1
u

12
uc~x!u4G , ~2.1!

where c(x) is an N-component field with c2(x)
5S i 51

N c i
2(x), and the random variablew(x) has a Gaussian

distribution

P„w~x!…5

expF2
w~x!2

2D G
A2pD

~2.2!

with mean

w~x!50 ~2.3!

and variance

w~x!w~x8!5Ddd~x2x8!. ~2.4!

The overline in Eq.~2.4! indicates a random average pe
formed with the distributionP„w(x)…. Here we will consider
a system in a finite cube of volumeLd with periodic bound-
ary conditions. This means that the following expans
takes place:

c~x!5
1

Ld (
k

c̃~k!exp~ ik•x! ~2.5!

and

w~x!5
1

Ld (
k

w̃~k!exp~ ik•x!, ~2.6!
02612
e-

f
ve

n
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ts

n

n

wherek is a discrete vector with componentski52pni /L,
ni50,61,62, . . . , i 51, . . . ,d and a cutoffL;a21 ~a is
the lattice spacing!. In this paper, we are interested in th
continuum limit, i.e.,a→0.

In our case of quenched randomness one must averag
logarithm of the partition function over the Gaussian dist
bution ~2.2! to produce the free energy

F@Hr #52E
2`

`

Dw~x!P„w~x!…ln Zr ; ~2.7!

where

Zr5Trc exp@Hr #. ~2.8!

It is well known that the direct average over the Gauss
leads to equivalent results@24# for the critical behavior in the
n50 limit of the following ‘‘pure’’ translationally invariant
model @25#:

Hp~n!52
1

2 (
a51

n E
Ld

ddxFtuca~x!u21cu“ca(x)u2

1
u

12
uca~x!u4G

1
D

8 (
a,b51

n E
Ld

ddxuca~x!u2ucb~x!u2. ~2.9!

Here ca(x), a51, . . . ,n ~n being the number of replicas!

are components of an (n3N)-component fieldc̄(x). Owing
to this equivalence, the modelHp has been the object o
intensive field-theoretical studies~see @23# and references
therein! in the bulk case. Much less is known for the equiv
lence ofHr and then50 limit of Hp in the finite-size case
Problems may arise when finite-size techniques are u
since both the proceduresL→` and removing of the disor-
der by the ‘‘trick’’ n→0 may not commute.

III. THE EFFECTIVE HAMILTONIAN

In this work we will use the RG technique introduced
@13,14# for studying pure systems with finite geometry. Th
technique permits explicit analytical calculations above a
in the neighborhood of the upper critical dimension. T
main idea is to expand the field in Eq.~2.1! in Fourier modes
and then to treat the zero mode separately from the non
modes. The nonzero modes can be treated by the met
developed for the bulk systems~e.g., loop expansion!, while
the zero mode, whose fluctuations are damped at the cri
temperature, has to be treated exactly. This overcomes
problems due to the infrared~IR! divergences that take plac
in finite-size systems~see Ref.@26#!.

In our more complicated case we have two possibiliti
to consider the random model equation~2.1! or to consider
the replicated pure model equation~2.9!. The last one is
closer to the case treated in@13,14# by getting around the
difficulties due to the random average performed w
P„w(x)… and is used in the present study. For this case,
9-2
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FINITE-SIZE SCALING IN DISORDERED SYSTEMS PHYSICAL REVIEW E65 026129
replicated partition function is given by

Zp~n!5E DcW exp@Hp~n!#. ~3.1!

We decompose the fieldcW (x) into a zero-momentum com
ponentfW 5L2d*ddxcW (x), which plays the role of the uni
form magnetization, and a second part depending upon
nonzero modessW 5L2dSkÞ0c̃(k)exp(2ik•x). After some
algebra, the partition function can be expressed as

Zp~n!5E Df Ds expH 2
Ld

2 (
a51

n S r 0fa
21

u0

12
fa

4 D
1

LdD0

8 S (
a51

n

fa
2 D 2

2
1

2 (
a51

n

(
k

F r 01k21
u0

2
fa

2

2
D0

2 (
b51

n

fb
2 Gsa

21~higher powers ofs!J .

~3.2!

Here the terms involving*ddxs vanish sinces depends only
on nonzero modes. The terms containings are treated using
diagram expansion, leading to the effective Hamiltonian
the one-loop approximation,

Hp
eff~u!52

Ld

2 (
a51

n S t̃~n!fa
21

ũ~n!

12
fa

4 D
1

LdD̃~n!

8 S (
a51

n

fa
2 D 2

, ~3.3!

where t̃(n), ũ(n), and D̃(n) will be presented below. With
the help of the identity

expS aA2

2 D5
1

~2pa!1/2E
2`

`

dy exp@2~1/2a!y21yA#,

~3.4!

we get

Zp
eff~n!5Trf exp@Hp

eff~n!#5E
2`

`

dy Pn~y!

3FSNE
0

`

dufu ufuN21 exp$Hr
eff~n!%Gn

, ~3.5!

where

Heff~n!52
1

2
LdF S t̃ ~n!1

y

Ld/2D ufu21
1

12
ũ~n!ufu4G

~3.6!

is an effective Hamiltonian with a random variabley with
Gaussian distribution@depending onD̃(n)#
02612
he

n

Pn~y!5

expS 2
y2

2D̃~n!
D

A2pD̃~n!

~3.7!

and SN52pN/2/G(N/2) is the surface of anN-dimensional
unit sphere.

Let us note that the above mentioned equivalence betw
the models~2.1! and~2.9! may be mathematically expresse
within the used approximation, by the following relation:

F@Hr #52
]

]n
Zp~n!un50 . ~3.8!

From Eqs.~3.5! and ~3.8!, and by using the identity

]

]n
An~n!un505 ln A~0! ~3.9!

for the free energy, we get

F@Hr #52E
2`

`

dy P0~y!ln Zr~0!, ~3.10!

where

Zr~0!5SNE
0

`

dufu ufuN21 exp@Hr
eff~0!# ~3.11!

is the partition function for the random system~3.6! after
taking the limit n→0. The obtained effective ‘‘random-Tc
model’’ ~3.6!, distributed with Gaussian weight~3.7!, is the
analytic basis of this paper. The effective constantst̃ (n),
ũ(n), and D̃(n) involve n and finite-sizeL as parameters
For describing the finite-size properties of the initial mod
~2.1!, as follows from Eqs.~3.10! and ~3.11!, it is necessary
to setn to zero. In the following sections we shall consid
the results of this procedure.

IV. THE FSS EXPRESSION FOR THE FREE ENERGY AND
CUMULANTS IN THE ZERO-MODE APPROXIMATION

If we neglect the loop corrections this corresponds to
mean-field~MF! approximation, i.e.,d.4. Then the zero
mode playing the role of the uniform magnetization may
treated exactly. In this case the effective Hamiltonian~3.3! of
the model reduces to

Hp
MF52

1

2
LdF t (

a51

n

fa
21

1

12
u (

a51

n

~fa
2 !22

D

4 S (
a51

n

fa
2 D 2G .

~4.1!

Now using an appropriate rescaling of the fieldufu
5(uLd)21/4F and introducing the scaling variable

m5tLd/2u21/2 ~4.2!
9-3
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for the partition function~3.11! in the mean-field approxima
tion, we obtain

Zr
MF~0!5~uLd!2N/4IN~m1y/u1/2!, ~4.3!

where we have introduced the following auxiliary function

IN~z!5SNE
0

`

dF F~N21! exp$2 1
2 @zF21 1

12 F4#%.

~4.4!

From Eqs.~3.10! and ~4.3! we get for the free energy

F@Hr
MF#52

1

A2pD
E

2`

`

dy expS 2
1

2

y2

D D ln@~uLd!2N/4

3IN~m1y/u1/2!#. ~4.5!

If we introduce a second scaling variable

l5
D

u
, ~4.6!

and use Eqs.~A4! ~see the Appendix!, Eq.~4.5! takes its final
form,

F@Hr
MF#52

1

A2pl
E

2`

`

dx exp@2~x2m!2/~2l!#

3 ln@D2N/2~)x!#2
3

4
~l1m2!

1
N

4
lnS uLd

12p2D . ~4.7!

For the Ising caseN51 a similar expression for the
quenched free energy in a slightly different context is o
tained and its analytic structure is studied in Refs.@27–29#.
Obviously Eq.~4.7! is well defined for any positivel and in
the limit l→0 we recover the well-known result for the fre
energy of the pure model.

In addition to the free energy, one also needs to know
correlation functions. Within the replica method the avera
of the fields$fb% are defined by~see, e.g.,@12#!

^ufbu2m&H
r
MF5 lim

n→0
FZp

MF~n!21SN
n E S )

a51

n

dufau D
3~ ufau!N21~ ufbu!2m exp~Hp

MF!G , ~4.8!

where

Zp
MF~n!5SN

n E S )
a51

n

dufau D ~ ufau!N21 exp~Hp
MF!.

~4.9!
02612
-

e
s

Note that the final result must be independent of replica
dex b, becauseHp

MF is invariant under permutation of th
replicas. After taking the limitn→0, we end up with the
following expression:

M2mª^ufbu2m&H
r
MF

5
~uLd!2m/2

A2pl
E

2`

`

dx
IN12m~x!

IN~x!
e2~x2m!2/2l.

~4.10!

In a similar way

~M2!2
ª^ufau2ufbu2&H

r
MF

5
~uLd!21

A2pl
E

2`

`

dxFIN12~x!

IN~x! G2

e2~x2m!2/2l.

~4.11!

Equations~4.10! and~4.11! show that the finite-size scal
ing depends on two scaling variablesm from Eq.~4.2! andl
from Eq. ~4.6!. Only the first one is size dependent, havi
the same form as in the pure case@13#. This result leads to
the prediction that above four dimensions, the weak disor
does not affect the finite-size scaling proven for pure s
tems. From Eqs.~4.10! and~4.11!, whenm50 andN51, we
obtain the results of Ref.@6#.

In terms of the momentaM2p the susceptibility is given
as

x5LdM2. ~4.12!

Another quantity of importance for numerical analysis is t
Binder cumulant defined by

B512
1

3

M4

M2
2

~4.13!

and the cumulant specific for the random system defined

R5
~M2!

2
2M2

2

M2
2

. ~4.14!

Since the parameterR is the relative variance of the ob
servable~the susceptibility!, as we said in the Introduction, i
is a measure of the SA in the random system. If SA ta
place this quantity should be zero in the thermodynam
limit.

V. FINITE-SIZE SHIFT OF Tc : LOWEST ORDER IN e

For d,4, the perturbatively calculated parts of the fr
energy and cumulants, which contain contributions of
nonzero modes, depend, to one-loop order, on the shift of
critical temperature and on the renormalized coupling c
stantsu andD. The application of the finite-sizee expansion
9-4
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FINITE-SIZE SCALING IN DISORDERED SYSTEMS PHYSICAL REVIEW E65 026129
to the model system~2.9! requires the corresponding reno
malization constants.

To one-loop order, using the minimal subtraction schem
before taking then→0 limit, we obtain

Zt511
N12

6e
û2

21nN

2e
D̂, ~5.1a!

Zu511
N18

6e
û2

6D̂

e
, ~5.1b!

ZD511
N12

3e
û2

81nN

2e
D̂. ~5.1c!

In Eqs.~5.1!,

û5u
2

~4p!d/2G~d/2!
, ~5.2a!

D̂5D
2

~4p!d/2G~d/2!
. ~5.2b!

The b functions associated withû and D̂ have the form

bu52ûe1
N18

6
û226ûD̂, ~5.3a!

bD52D̂e2
81nN

2
D̂21

N12

3
ûD̃. ~5.3b!

The fixed points of this system first have been studied in@30#
and for the purposes of the impurity problem in@17#. The
values ofû and D̂ in the fixed point, interesting in the ran
dom case, are

û* ~n!5
6~42nN!

16~N21!2nN~N18!
e, ~5.4a!

D̂* ~n!5
2~42N!

16~N21!2nN~N18!
e. ~5.4b!

The corresponding expression for the exponentn up to the
first order ofe is

1

n~n!
522

6N~12n!

16~N21!2nN~N18!
e. ~5.5!

It should be noted here that we shall consid
N-component fields with 1,N,Nc(d), where Nc(d)54
24e1O(e2) is the critical number of spin components th
defines the stability of the random fixed point in then50
limit. The stability of the different fixed points of the mode
has been also considered in@31#. The analysis of the Ising
case (N51) needs to perform a loop expansion to seco
order ~see Introduction! and is beyond the scope of th
present study.
02612
,

r

d

As was explained above, the loop corrections will
treated perturbatively in the nonzerok modes. In the lowest
order in e, this procedure generates a shift of the critic
temperaturet→ t̃ (n),

t̃ ~n!5tZt1tL , ~5.6!

where the termtZt is coming from the one-loop counterterm
@see Eq.~5.1!#, and

tL5FN12

6
û2

21Nn

2
D̂G 1

Ld (
k

8
1

k21t
~5.7!

is the finite-size correction. The two diagrammatic contrib
tions for tL are shown in Fig. 1. Both diagrams from theu
and theD contributions differ only by their numerical fac
tors. The prime in thed-fold sum in the above equation
denotes that the term with a zero summation index has b
omitted.

After some algebra@for details of the pure case (D50),
see Ref.@13##, near the upper critical dimensiond542e,
we obtain

t̃ ~n!5t1FN12

12
û2

21Nn

4
D̂G@ t ln t14L22F4,2~ tL2!#,

~5.8!

where

Fd,2~x!5E
0

`

dzexpS 2
xz

~2p!2D F S (
l 52`

`

e2zl2D d

21

2S p

z D d/2G . ~5.9!

Some particular values of the constantFd,2(0) and a method
of calculation are given in@32#.

At the fixed pointû5û* (n), D̂5D̂* (n), up to the first
order ine, the terms proportional to lnL cancel and Eq.~5.8!
can be written in the following scaling form:

t̃ ~n!L25y2
3~n21!N

16~N21!2nN~N18!
@y ln y14F4,2~y!#e,

~5.10!

where the scaling variabley5tL1/n(n) has been introduced.
In the n50 limit, the expression for the exponent me

suring the divergence of the correlation length is@16,17#

1

nR
[

1

n~0!
522

3N

8~N21!
e, ~5.11!

FIG. 1. One-loop contributions to the reduced temperaturet.
9-5
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instead of the critical exponent for the pure case

1

np
522

N12

N18
e. ~5.12!

The scaling form~5.10! can be written for this case as

t̂~0!L25y1
3N

16~N21!
@y ln y14E4,2~y!#e, ~5.13!

wherey5tL1/nR.
From the above expression one can obtain the largL

asymptotic form of theTc(`) shift, i.e.,

Tc~L !2Tc~`!;L21/nR. ~5.14!

In Eq. ~5.14!, Tc(L)ªTc(w,L) denotes the average pseu
ocritical temperature@Tc(w,L) is pseudocritical temperatur
for a specific random realizationw(x)# and Tc(`)
5 limL→` Tc(L). Equation ~5.14! was suggested in@2#.
Combined with the phenomenological FSS theory it ga
rise to the lack of SA, and is confirmed by numerical stud
~see@4#!. Here it is verified independently and directly.

VI. RENORMALIZATION OF THE COUPLING
CONSTANTS: LOWEST ORDER IN e

We perform the renormalization in a similar way also f
ũ(n) andD̃(n) by taking into account the diagrammatic co
tributions fromu andD shown in Fig. 2. The result is

ũ~n!5uZu2uL , ~6.1a!

D̃~n!5DZD1DL , ~6.1b!

whereuZu and DZD are the one-loop counterterms for th
coupling constants and

uL52Fu2
N18

6
26uDG 1

Ld (
k

8
1

~k21t !2 , ~6.2a!

DL52FuD
N12

3
2

81nN

2
D2G 1

Ld (
k

8
1

~k21t !2

~6.2b!

are the corresponding finite-size corrections. As one can
the summand in Eq.~6.2! can be expressed as the first d
rivative of the summand of Eq.~5.7! with respect tot. So, at

FIG. 2. One-loop contributions to the couplingsu andD.
02612
-

e
s

e,
-

the fixed point, algebraic transformations similar to tho
performed in the preceding section lead to

ũ* ~n!Le5u* ~n!@11 1
2 ~11 ln y!e12eF4,28 ~y!#,

~6.3a!

D̃* ~n!Le5D* ~n!@11 1
2 ~11 ln y!e12eF4,28 ~y!#,

~6.3b!

where the prime indicates that we have the derivative of
function F4.2(y) with respect to its argument.

The results for the disordered system simply follow
setting n50. From the results for the shift of the critica
temperature~5.10! and the renormalization of the couplin
constantu, given by Eq.~6.3a!, we reproduce the results fo
the pure FSS case by settingD50 andn50. Moreover, this
result still holds even if we find the FSS corrections after
analytical continuation ton50, expressing the commutativ
ity of the problem.

VII. VERIFICATION OF FSS

Let us consider the scaling variables

m~n!5 t̃ ~n!Ld/2/Aũ~n!, l~n!5D̃~n!/ũ~n!. ~7.1!

At the fixed point they can be expressed in terms of sca
variabley5tL1/n(n),

m* ~n!5
1

Au* ~n!

3H y2
1

4
yF11

~42N!~42nN!

16~N21!2nN~N18!
ln yGe

2
12N~n21!

16~N21!2nN~N18!
F4,2~y!e2yF4,28 ~y!eJ

~7.2!

and

l* ~u!5
42N

3~42nN!
. ~7.3!

In the limit n50, Eqs.~7.2! and ~7.3! yield the following
scaling variables describing the disordered system~2.1!:

m*ªm* ~0!5
1

Au* ~0!
H y2

1

4
yF11

42N

4~N21!
ln yGe

1
3N

4~N21!
F4.2~y!e2yF4.28 ~y!eJ , ~7.4!

wherey5tL1/nR, and

l*ªl* ~0!5
42N

12
. ~7.5!

These equations verify the finite-size scaling hypotheses
show that we are really dealing with a one-variable proble
9-6
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since the second variablel* is a fixed universal number. A
the critical pointt50, since the constantF4,2(0)528 ln 2,
see Ref.@32#, we have

m0*ªm* u t5052
N ln 2

p S 3e

N21D 1/2

. ~7.6!

Numerical values for different thermodynamic quantities c
be obtained with the help of Eqs.~7.5! and ~7.6!. Note that
the scaling variablem0* is proportional toAe, Consequently
all the e-expansion results will be expressed in powers
Ae, as was the case for the pure systems~see@13#, for ex-
ample!.

VIII. CUMULANTS AND SELF-AVERAGING

In Ref. @6#, the Binder cumulantB and the relative vari-
anceR @Eqs.~4.13! and~4.14!# have been calculated analyt
cally and numerically at the critical pointT5Tc in the
asymptotic regimel> 1

4 for N51 and d54. In Ref. @33#
~see also@4#!, the same quantities were calculated nume
cally for N51 andd53. In both cases the results show th
the system exhibits a lack of SA.

In the remainder of this section we concentrate on
calculation of the cumulantsB andR @Eqs.~4.13! and~4.14!#
in casesd>4 andd542e. The reason for considering th
cased>4 is in its simple analytical nonperturbative trea
ment. Although the results based on thee expansion give
only a qualitative description of the three-dimensional ph
ics, we hope that they shed some light at least on the ap
cability of the theory for studying diluted models.

Let us first note that if 1,N,4 andd542e, the case
under consideration applies to the situation@see Eq.~5.11!#
wherenR.2/d and randomness is relevant~R case!. Up to
the first order ine, due to the RG arguments, no SA must
expected near the critical point@2#. This statement is sup
ported also by our RG calculations. In Tables I and II w
present the corresponding universal numbers forB andR at
d>4 andd53 in the regionLtnR5L/j!1, i.e., in the vicin-
ity of the critical point. The calculations are performed wi
variablem50 for d>4 andm5m0* from Eq. ~7.6! ~setting
e51! for d53, and with variablel taken from Eq.~7.5! in
both cases. The asymptotic behavior for smallm is presented
in the Appendix. The numerical values ofB and R in the
random case and forN51, presented in Table I are in fu
agreement with those obtained in Ref.@6#, while those ofB

TABLE I. Numerical values for the Binder cumulantB from Eq.
~4.13! and the relative varianceR from Eq. ~4.14! in the mean-field
regime, i.e.,d>4.

Random Pure
N B R B R

1 0.216 368 0.310 240 0.270 520 0
2 0.451 486 0.111 381 0.470 401 0
3 0.533 513 0.038 365 0.543 053 0
4 0.575 587 0 0.575 587 0
02612
n

f

i-
t

e

-
li-

for the pure case andN51 ~Tables I and II! are in full
agreement with Ref.@13#.

The random caseN51 for d,4 cannot be considere
within the present expansion, because of the apparent d
gence ofm0* that takes place to the used order ine. Up to
now there are only numerical valuesB5 2

3 , g250.448, and
R5g250.510(7) obtained in@33# through Monte Carlo
simulations. What is possible to calculate here are the co
sponding values ofB andR very close toN51, e.g., forN
51.001. For completeness these results are presente
Table II. More generally, one can see that ifN→1, thenB
→ 2

3 and R→0, i.e., the system exhibits SA. This evide
discrepancy with the reality is due to the wrong assumpt
that some information about the random caseN51 can be
obtained from the above formulas in this limiting case. As
was pointed out, the correct treatment of the caseN51
seems to be a more difficult computational problem.

The finite-size correction to the bulk critical behavior
the cumulantsB andR in the regionLtnR5L/j@1. i.e., away
from the critical point, are obtained with the help of th
asymptoticsm@1, given in the Appendix@Eqs. ~A7! and
~A8!#. According to the analysis presented there, we obt
for Binder’s cumulant.

B512
1

3 S 11
2

ND F11
3l21

3m2 G1OS 1

m3D . ~8.1!

For the cumulantR we get

R5
l

m2 1OS 1

m3D . ~8.2!

The final results can be obtained by replacingl andm by
their respective expressions evaluated at the fixed point
the model given in Eqs.~7.4! and ~7.5!. So, to the lowest
order ine, we have

B512
1

3 S 11
2

ND1OS j

L D ~8.3!

and

R5
42N

8~N21!
eS j

L D 4

1OS j5

L5D . ~8.4!

It is interesting to compare Eq.~8.1! with the correspond-
ing result for the pure system@34#,

TABLE II. Numerical values for the Binder cumulantB from
Eq. ~4.13! and the relative varianceR from Eq. ~4.14! at d53.

Random Pure
N B R B R

1 0.400 024 0
1.001 0.666 334 0.000 427 0.400 328 0

2 0.602 793 0.061 279 0.547 496 0
3 0.625 783 0.022 688 0.592 813 0
4 0.640 628 0 0.614 002 0
9-7
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Bpure512
1

3 S 11
2

ND F12
1

3mp
2 1OS 1

mp
4D G . ~8.5!

Up to the lowest order in 1/m they coincide for 1,N,4;
moreover, for N542d ~with d!1!, we have m5mp
1O(ed) and B5Bpure1O(ed). The result~8.4! confirms
the statement@2# that away from the critical point, a stron
SA emerges in the system asR→0 with L/j@1.

IX. CONCLUSIONS

In the present paper we propose a general scheme fo
FSS analysis of finite-size disorderedO(N) system. The
method we use here is an extension of the field-theore
methods used to analyze FSS properties in pure systems
nature of the symmetry~obtained as a consequence of the u
of the replica trick, which removes the disorder! of the model
complicates the perturbative structure of the theory in co
parison with the correspondingO(N) pure one. Recall that
the final results for the disordered system are obtained
making the number of replicas vanishing. Our results c
cern mainly systems with number of components larger t
1, i.e., non-Ising systems. Their extension to Ising syste
requires higher loop calculations because of the degene
of the one-loop order RG equations.

Our main results are related to the formulation of t
problem for some number of componentsN of the fluctuating
field for dimensionsd.4 andd542e. Due to the presence
of randomness, it is shown that we are dealing with a tw
variable problem with scaling variablesm5tLd/2u21/2 and
l5D/u. In the mean-field regimed.4 our results are a
generalization forN.1 of those obtained in@6# for N51.
Evaluating numerically the corresponding analytic expr
sions for the Binder’s cumulantB and the relative variance
R, we demonstrate a monotonic increase ofB as a function of
N in both pure and random cases and a monotonic decr
of R ~to zero forN54! in the random case~see Table I!.

The e expansion to first order ine shows that close to the
critical temperature, one can express the physical obs
ables, the shift of the critical temperature, and the renorm
ization of the coupling constants in terms ofm andl. In the
random fixed point the parameterl takes a universal value
@see Eq.~7.5!#. It is found that the distance, over which th
bulk critical temperature is shifted is proportional toL21/nR

in agreement with the statement of Ref.@2#. This result, com-
bined with phenomenological FSS, gives rise to the lack
SA. The scaling parametersm and l also enter in the fina
expression for the Binder cumulant~4.13! and the relative
variances~4.14!, giving explicit expressions for them in th
different asymptotic regimes. The numerical calculation
the above parameters permits also the verification of the
and SA~see Table II!. The latter is shown to be absent in th
regime nR.2/d, where randomness is relevant, and o
analysis explicitly shows that in this regime the relative va
ance is always nonzero for the case of stability of the
solutions, i.e., 1,N,4 andd542e.

One can also try to repeat the analysis without the us
the replica trick. For this, one needs to define in a proper w
the procedure in the zero-mode approximation, when res
02612
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ing the random part of the Hamiltonian for a finite syste
One can realize that this is thek50 part of this term, which
will give a contribution to the free energy. This scheme p
mits formally to end with the same expressions for the s
of the critical temperature and the renormalization consta
as we did within the replica formalism.

In our opinion, the present FSS study can be also app
in the ‘‘canonical’’ case@5#, where the disorder is characte
ized by a constant total number of the occupied sites~or
bonds!, instead of the constant average density. We hope
results, similar to the bulk case, will also hold in the case
finite geometry, relating in this way our theoretical findin
with the Monte Carlo simulations.
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APPENDIX: FINITE-SIZE SCALING BEHAVIOR OF THE
EVEN MOMENTS OF THE ORDER PARAMETER

In this appendix we present the mathematical details
how to obtain the asymptotes of the averages

M2m5
~uLd!2m/2

A2p
E

2`

`

dx
IN12m~m1Alx!

IN~m1Alx!
e2x2/2,

~A1a!

~M2!25
~uLd!21

A2p
E

2`

`

dxFIN12~m1Alx!

IN~m1Alx!
G 2

e2x2/2,

~A1b!

where we have introduced the function

IN~z!5SNE
0

`

dF F~N21! exp$2 1
2 @zF21 1

12 F4#%.

~A2!

The integral in the definition of functionIN(z) given by Eq.
~A2! may be evaluated in terms of parabolic cylinder fun
tions Dp(z) using the identity@35#

E
0

`

xn21e2bx22gx dx5~2b!2n/2G~n!expS g2

8b DD2nS g

A2b
D .

~A3!

The result is

IN~z!5~12p2!N/4 expS 3z2

4 DD2N/2~)z!. ~A4!

Now the above integrand in Eq.~A1a! can be rewritten in
a very simple form
9-8
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M2m~x!ª
IN12m~m1Alx!

IN~m1Alx!

5~12p2!m/2
D2m2N/2@~m1Alx!)#

D2N/2@~m1Alx!)#
. ~A5!

For smallm!1 ~i.e., in the vicinity of the critical point!
the asymptotic form of the ratio~A5! is given by

M2m~x!5~12p2!m/2H D2m2N/2~xA3l!

D2N/2~xA3l!

1
m)

2 FN
D2N/22 1~xA3l!D2m2N/2~xA3l!

@D2N/2~xA3l!#2

2~2m1N!
D2m2N/221~xA3l!

D2N/2~xA3l!
G1O~m!2J .

~A6!

In the mean-field regime and at the critical point we ha
m50, andM2m is equal to the first term in the right-han
side of Eq.~A6!.

For largem@1, the asymptotic behavior of the ratioM2m
is obtained with the help of the well-known Watson
Lemma.

Lemma. ~See, for example,@36#! Supposea.0, b.0 and
f (x) is an analytic function in a neighborhood of x50,

f ~x!5 (
k50

`
f ~k!~0!

k!
xk, uxu,R,

and that
.

ca
,

02612
e

u f ~x!u<c1ec2xa
, xP@R,X#

for positive constants c1 , c2 . Then

E
0

X

xb21e2sxa
f ~x!dx;

1

a (
k50

`

s2~k1b!/aGS k1b

a D f ~k!~0!

k!
,

as s→` in the sectoruargsu,p/2.
According to this Lemma, from Eqs.~A2! ~with z5m

1xAl! and ~A5!, we have

M2~x!5~12p2!1/2
N

m F12
xAl

m
1

6x2l2N22

6m2 1OS 1

m3D G
~A7!

and

M4~x!512p2
N~N12!

m2 F12
2xAl

m
1

9x2l2N23

3m2

1OS 1

m3D G . ~A8!

Using the asymptotic ofM2 andM4 for largem, we can
get the behavior of the cumulantsR and B in both casesd
>4 andd542e. They are given by

B512
1

3 S 11
2

ND F11
3l21

3m2 G1OS 1

m3D . ~A9!

For the cumulantR we get

R5
l

m2 1OS 1

m3D . ~A10!
an-
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